
The Internet of Actors - A Peer-to-Peer Agile

Value Creation Network

Florian Strecker and Reinhard Gniza

actnconnect, Frankenstr. 152, 90461 Nuremberg, Germany

June 14, 2019

Contents

1 Introduction 2

2 Smart Actors 2
2.1 Requirements . 3
2.2 The Foundation of Smart Actors: PASS 4

2.2.1 Calculus of Communicating Systems (CCS) 4
2.2.2 Parallel Activities Specification Scheme (PASS) 6

2.3 Independent Releasability of Smart Actors 8
2.4 Definition of Smart Actors . 10

3 A Peer-to-Peer Agile Value Creation Network 11
3.1 Definition of the Peer-to-Peer Agile Value Creation Network . . . 11
3.2 Internet of Actors Notation (IoAN) 12
3.3 Smart Actor Operating System (SMAOS) 12

4 Conclusion 12

Acknowledgements 13

References 13

Acronyms 16

1

1 Introduction

Network commerce has
consequences that go far beyond
just a business model. [...]
Markets are based on mistrust,
networks on trust. Markets are
based on the pursuit of
self-interest, networks on shared
interest. Markets are arm’s-length
transactions, networks are
intimate relationships. Markets
are competitive, networks are
cooperative.

Jeremy Rifkin ([Rif04], p. 192 f)

The intra- and inter-company work models change from classic, pre-defined,
inflexible business processes to agile value creation networks. Human, machines
and software collaborate in an integrated and coordinated way to fullfill their
objectives. This necessitates a new dimension of agility, speed of transforma-
tion and individuality. We strongly believe that we need an open network of
self-coordinating, modular components that offer fully-fledged interoperability
to tackle these challenges on the way to autonomous software systems. At the
same time such a network will offer an economic alternative to the classic, cen-
tralized platform models and standards of the current IT-industry. These, e.g.
BPMN, ”fail to guarantee that standard-conforming business process models
are interoperable (platform-independent)” ([Bör11]).
Some scientists are already aware of these challenges and laid out fundamental
groundwork. Christian Stary proposes ”a System-of-Systems specification as
a network of cooperating behavior entities” ([Sta17]). These and similar ideas
converge on the creation of a new era in systems design.
This whitepaper presents a methodology, a modular concept and the foundation
of the Internet of Actors (IoA). The IoA will reduce complexity, programming
efforts and unclear interfaces while creating an Interoperability Network. It is
going to be an enabler for agile, decentralized, self-coordinating value creation
networks, acting as catalyst for the Internet of Things, Digital Transformation
and Industry 4.0.

2 Smart Actors

To create such an agile value creation network we first need to focus on the
atomic components (= the nodes and their respective relations) the network is
comprised of. Smart Actors (SMA) are the basic building blocks of the IoA.
As the IoA is designed as a network, the network nodes need the respective
capabilities to deal with challenges like inter-company collaboration in a (self-
)coordinated, modular encapsulated manner (mentioned in 1 Introduction).

2

2.1 Requirements

The main requirements to the network nodes are similar to the requirements
that can be observed with the architectural pattern of microservices (based on
[FL14]), as microservices can also be interpreted as dedicated nodes in network-
like applications:

(MS1) determine the functional scope based on a single business capability that
is decomposed on its lowest level for the domain applicable

(MS2) consistent encapsulation leading to very clear interfaces to other network
nodes (e.g. according to the Law of Demeter [Wikc]: each unit should
have limited knowledge about other units)

(MS3) ”smartness” (”smart endpoints, dumb pipes” [FL14]) in a sense of being
able to do everything needed to add value with its actions without doing
”too much” (YAGNI-dilemma [Wiki])

(MS4) independently releasable without being in the need of other components
thus ensuring independent lifecycles of the different nodes

(MS5) self-organizing - in regards to building a network, the nodes must be able
to connect to each other in a meaningful way thus ensuring added value
in terms of Aristoteles’ synergy-principle (the whole is greater than the
sum of its parts [Wike]) and tackling the issue of messy service connec-
tions ([FL14]) by using a clear (and yet flexible) communication structure
between different components

(MS6) asynchronous connections between single network nodes in order to ensure
resilience to temporarily breakdowns (due to infrastructure, scalability or
timing issues in parts of the network)

To meet these requirements, we propose the creation of Smart Actors as
nodes and therefore as core building blocks of the peer-to-peer agile value cre-
ation network.
Therefore, a Smart Actor is able to:

(R1) fullfill a well-defined task

(R2) ”know” the execution-logic needed to fulfill this task, including decision-
rules, different paths etc.

(R3) gather and hold all data needed for the task

(R4) offering a means to extract the essence of the task in a machine-readable
way (as an enabler for self-organization)

(R5) connect to arbitrary software-interfaces or physical machines in order to
exchange data

(R6) present its data to human users and offer possibilities to change these data
or take decisions where defined by the SMA (= ”frontend”/ UI [Wikh])

(R7) communicate with other SMAs via well-defined protocols to gather infor-
mation and/ or to propagate its output(s)

3

Figure 1: Basic Operations of CCS ([Fle94], p. 130)

(R8) has its own release cycle (= being indepently releasable) without being
directly affected by the release cycles of others

(R9) can be executed in a software system by interpreting or compiling its
definition/ source code

The foundation of our Smart Actors can be found in software design con-
cepts reaching back to the 1970’s.

2.2 The Foundation of Smart Actors: PASS

In 1994, Albert Fleischmann proposed a concept called ”SAPP/ PASS” (Struc-
tured Analysis of Parallel Programs in conjunction with Parallel Activities Spec-
ification Scheme, [Fle94], pp. 204 ff). This scheme is based on Milner’s and
Hoare’s Calculus of Communicating Systems (CCS, [Mil80]) which has later
been developed into the π-calculus ([Mil92]).

2.2.1 Calculus of Communicating Systems (CCS)

Fleischmann describes the CCS as ”a theoretically very important technique
for describing the behaviour of processes1 explicitly” ([Fle94], p. 130). Para-
phrasing [Fle94] (pp. 130-134), the CCS offers the following: The behaviour
of a process2 is described as a rooted, unordered, finite branching tree. The
initial state of the process is represented by its root. Branches are labelled and
represent actions or transitions to a next state. The CCS distinguishes observ-
able and unobservable actions3. The trees offer elementary algebraic operations
(see figure 1). These operations obey basic algebraic laws (associativity, com-
mutativity and nullity, see figure 2). The trees are called behaviour trees
(describing processes). Expressions represent these trees (see figure 3): After
step a has been executed, steps b (x)or c can be executed next. It is also possi-
ble to model agents4 with infinite behaviour in CCS. Figure 4 illustrates agents

1In our case, a ”process” will become a Smart Actor
2= its algorithm
3observable or unobservable from outside of the process
4in our terms later: Smart Actors

4

Figure 2: Basic Laws in CCS ([Fle94], p. 131)

Figure 3: Example of Behaviour Expressions and Trees ([Fle94], p. 131)

X and Y , both with potentially finite behaviour5, and agent Z with a definite
infinite behaviour. Albert Fleischmann also focuses on the fact that for each
observable action there exists a complementary (or: inverse) action in CCS. It is
possible to link multiple agents together. If there exist complementary actions
in the different behaviour trees, these agents can communicate in synchronous
message exchanges6 (see [Fle94], p. 132).
In general, CCS offers a graph-style7 approach to model complex behaviours8

and communication between these.

5if transition X(a) or Y (e) is executed
6as opposed to asynchronous message exchange, which we will focus on later
7corresponds to tree-style
8matches in this case the term ”algorithms”

Figure 4: Infinite Process Behaviour ([Fle94], p. 132)

5

Figure 5: SAPP Specification ([Fle94], p. 207)

2.2.2 Parallel Activities Specification Scheme (PASS)

Based on the CCS9 Albert Fleischmann developed the Parallel Activities Spec-
ification Scheme (PASS) in conjunction with a method for Structured Analysis
of Parallel Programs (SAPP).
SAPP is a means to decompose complex systems into small, easy-to-handle

components. These components are able to be executed in parallel and to call
each other via clearly defined message channels (”message-types” [Fle94], p.
205). Figure 5 exemplifies such a SAPP specification, where T can send mes-
sages of type M3 to P and P can send type M2 to T 10. This type of diagram
represents possible communication channels, but has no time, sequence or fre-
quency restrictions.
PASS is used to define a single ”process” ([Fle94])11. A PASS description con-

tains information about synchronization of messages (”input pool”12), a graph
representing the process behaviour (= algorithm/ ”intelligence” of the SMA)
and process-refinements handling data operations.
The SAPP/ PASS concepts have also been adopted by parts of the Business
Process Management (BPM) community ([Fle+11]13). In contrast to classic
BPM methodologies, PASS is able to focus on actors and/ or agents involved in
business processes. These can be humans, software components or machines in
mixed setups.

9and other methods, [Fle94], p. 201
10for completeness of the example: Q can send M1 to P , P can send M1 to R, R can send

M2 to P
11= Smart Actor in our terms
12Input pools are one of the most important concepts of PASS as they enable messages to

be sent either synchronous or asynchronous between components and even offer possibilities
to restrict the number of messages being received at a certain time etc. Without input pools,
especially the crucial asynchronous communication would not work. We do not explain the
details of this concept, as they are not needed for grasping the general communication of
SMAs.

13English, enhanced version of the original (German) book: [Fle+12]

6

Figure 6: PASS Specification ([Fle94], p. 208)

7

One reason for this adoption by the BPM community, similar to the advan-
tages/ main features of software system development using PASS, is its Turing
Completeness ([Wikf]). This has been proven by an interpreter model based
on Abstract State Machines (ASM, [Gur95] and [BS03]), which are based on
Finite State Machines. As PASS graphs themselves represent state machines,
they can be interpreted like program source code. Therefore it is possible to
execute a PASS model instantly without being forced to transform or manually
code it. Egon Börger created such an interpreter ”for both simulation (testing)
and verification (logical analysis of properties of interest) of classes of S-BPM14

processes” ([Bör12]).
The original SAPP/ PASS methodologies unfortunately define that ”in the
PASS model each system consists of a fixed number of processes15 and each
process has a unique name” ([Fle94], p. 205). But to achieve independent re-
leasability it is paramount that SMAs do not have fixed communication chan-
nels to other actors and allow agile reconfiguration of the communication net-
work they are part of.

2.3 Independent Releasability of Smart Actors

To tackle the requirement of independently releasable components, we created
a concept of well-defined but loose-bound communication channels.
This concept is based on CCS, ASM and PASS. Even if PASS in conjunction
with SAPP basically tries to model and execute complete, enclosed systems16,
PASS graphs can be used to discern one or more observable behaviours17. We
use a PASS graph as constituting component of a Smart Actor. An observable
behaviour is basically a reduced version of the PASS graph, focusing on the
communication18 that can potentially happen with one specific communication
partner (= another PASS graph). This can be named ”role-based behaviour
interface” (RBI), as every communication partner acts in a specific role in its
relation to the PASS graph in focus. It follows that a RBI can be created for
every potential communication partner of a PASS graph.
Figure 7 shows a graph X that depicts communication with 2 different partners

(partner ′ (A) and partner ′′ (B))19. Therefore 2 RBIs can be extracted from
this graph. The RBI from X to A, RBI(X,A) consists of all possible message
flows between X and A, their direction and their structural content20. To the
relation between X and B applies the same, there is an RBI(X,B).
To every RBI(graphx, graphy) (1) there exists an inverse RBI ′(graphx, graphy)
(2).

14S-BPM corresponds to PASS in our context
15again: process maps to Smart Actor in our context
16with asynchronous communication within the system
17see also CCS’s observable actions, section 2.2.1. PASS graphs can also be transformed to

CCS behaviour expressions, which aren’t as powerful as some PASS features ([Fle94], p. 259
ff), but are therefore suitable to ”observe” the communication behaviour

18sending messages or receiving messages
19We intentionally left out information about the types of the graph’s states (send, receive,

do (internal)) to focus on the RBI explanation.
20by structural content we mean data structures (and semantics) transported by a message

8

Figure 7: Example of a graph to discern a RBI ([SF16])

RBI(graphx, graphy)

with graphx = original Smart Actor

and graphy = potential Communication Partner (1)

RBI ′(graphx, graphy) = RBI(graphz, graphx)

with graphx, graphy, graphz ∈ SmartActors (2)

This inverse RBI ′ is a tree performing the same message flows like RBI, but
does a send where in RBI there is a receive and a receive where there is a send.
It is possible to find any SMA Z that has one of its RBI that corresponds to
RBI ′ (3).

RBI(Z,Z ′) = RBI ′(X,Z) (3)

This means that these PASS graph representations of SMAs are able to
communicate with each other; in this case, they can be connected (4 - 6):

⇒ Z ′ = X (4)

⇒ RBI(Z,X) = RBI ′(X,Z) (5)

⇒ RBI(X,Z) = RBI ′(Z,X) (6)

If there are a lot of Smart Actors known21, there may be more than one
Smart Actor that can be found as a potential communication partner. In this
case, rules on the communication context could have been set within the SMAs
themselves, further restricting the possible communication partners. Selection
strategies (like ”bestRated”, ”nearest”, ”firstComeFirstServe”, ...) can apply
additionally.
This approach shows that a Smart Actor does not have to be connected with

21or are being able to be discovered via address books, Smart Actor Name Systems (SMANS)
etc.

9

its communication partners before deployment for execution, as the RBIs make
it possible to find suitable communication partners even at execution time (see
also [SF16]). This represents also a difference to Agha’s approach ([Agh86]) to
software actors, as we do not need direct addressing of other actors, but can use
rule based addressing (RBA) via RBIs.

2.4 Definition of Smart Actors

Keeping the requirements (see 2.1), the foundational concepts CCS (see 2.2.1),
ASM, PASS (see 2.2.2) and our thoughts on independent releasability (see 2.3)
in mind, we can design a Smart Actor as follows:

(SMA1) The pivotal part is the definition of an internal behaviour graph22. The be-
haviour graph consists of states with the 3 basic operations (send, receive,
do), transitions between these states and references to the SMA’s data
(see (SMA2)). The behaviour represents the smartness (or: algorithm),
helping the Smart Actor to

(SMAB1) fullfill its task (requirement (R1)),

(SMAB2) know the execution logic needed (requirement (R2)),

(SMAB3) represent decision- and other rules as these are mapped to behaviour
and communication (requirements (R2) and (R7))

(SMAB4) extract the RBIs for defining the communication interfaces to other
SMAs (requirement (R7)) - thus creating interoperable building blocks

(SMA2) Additionally, a complete data structure can be defined for every Smart
Actor. This data structure contains everything the SMA needs within its
behaviour (requirement (R3)).

(SMA3) If the Smart Actor is a Service Actor or Physical Actor, meaning it
connects to microservices or arbitrary software components or software
interfaces, it needs a Service Mapping for each of its do-states, defining
calls and data exchange to and from these systems (requirement (R5)).

(SMA4) In case the Smart Actor is intended to support a human in executing a
task23, user interfaces (UI) can be defined by mapping to the do-states24

and data structures available, thus creating executable views on the Smart
Actor (requirement (R6)).

(SMA5) Metadata in a structured format are intended to offer machine- and human-
readable data about the SMAs essence, intentions (see [VB91]), creators,
costs and other useful information (requirement (R4)).

(SMA6) As the extracted RBIs define communication interfaces instead of a tight
coupling to other components, a SMA’s releasability/ deployability is
completely independent from others. Therefore, a Smart Actor repre-
sents a self-contained component (requirement (R8)).

22A Smart Actor can have more than one behaviour graph for specific applications like
Message Guards” (see [Fle+12], p. 120 ff), Behavior Macros (see [Fle+12], p. 112 ff) etc.

23we call that a Business Actor
24there are also special UI’s possible for receive

10

(SMA7) Due to its ASM-based, Turing-complete nature, a SMA can be executed
by interpreting its behaviour graph (requirement (R9)).

In summary, these Smart Actors fulfill all requirements listed in section 2.1
Requirements. Therefore, SMAs can also be used to execute SmartContracts
([Wikd] and [XWS19] p. 37 f) or act as DApps ([Wika] and [XWS19] p. 39 f).
A possible XML data format for describing SMAs is proposed in [Str+16].

3 A Peer-to-Peer Agile Value Creation Network

The concept of Smart Actors allows the creation of a peer-to-peer agile value
creation network which we call The Internet of Actors (IoA). We want this
network to facilitate a clean architecture and stick to an important principle
(known from bitcoin [Nak08], p. 8): ”The network is robust in its unstructured
simplicity. Nodes work all at once with little coordination”, whereas ’coordina-
tion’ is equivalent to ’no centralized orchestration’.

3.1 Definition of the Peer-to-Peer Agile Value Creation
Network

The SMAs represent the main building blocks and are the nodes within the
network. The characteristics of this network are:

Peer-to-Peer The SMAs can be executed in decentralized environments. If a Smart
Actor has the means to find communication partners and message with
them (see 3.3), the whole network can be built up in a distributed manner
without having a centralized structure.

Agile Smart Actors do not employ a tight coupling, but they are entirely uncou-
pled and independent from other SMAs. That allows the (self-sustaining)
configuration of the network to change at any time with the addition, the
removal or the update of new or existing Smart Actors (see 3.3). Each
network node is part of one or more choreographies25 that emerge from
the communication protocols (= RBI) and rules set by any SMA.

V alue Creation Objective of every SMA is to create a value (i.e. in terms of a capability),
by transforming any inputs to any outputs26. Thus, in the network as
a whole, there will be a multitude of focal areas (= choreographies) of
value creation. Due to the synergy-principle ([Wike]) the total of value
creation will be higher than the combined value-deltas of every single
SMA involved.

Network We talk of one single network instead of multiple networks, as - due to its
decentralized character - all Smart Actors can contribute and will be part
of the global network of collaboration and (therefore) interoperability.

Similar to most blockchain-based peer-to-peer technologies, this network shall
offer a standardized, open access for everyone who wants to contribute to the
network, e.g. by creating new Smart Actors. To facilitate this open access it is
paramount to create two areas of standardization.

25for definitions of the term ”choreography” see [Kol16]
26in- and outputs of SMAs are always messages within their respective communication

patterns

11

3.2 Internet of Actors Notation (IoAN)

One area of standardization is the Internet of Actors Notation (IoAN) which
will cover

(IoAN1) the complete definition of SMAs (see 2.4 Definition of Smart Actors),

(IoAN2) the notation of the RBIs,

(IoAN3) means to show and visualize choreographies of SMAs.

As mentioned before, first concepts regarding (IoAN1) have already been pro-
posed ([Str+16]) and implemented. Furthermore there is a standardization
group working on an OWL-definition of an exchange format ([EK18]).

3.3 Smart Actor Operating System (SMAOS)

The second area of standardization is a Smart Actor Operating System (SMAOS).
As discussed before (see 2.4 Definition of Smart Actors), Smart Actors can be
executed without any further preparations. For this execution, an operating
system is needed, that serves three main purposes. The SMAOS

(SMAOS1) can interpret and therefore execute SMAs,

(SMAOS2) facilitates communication between Smart Actors on the same SMAOS
instance and across different SMAOS instances, and

(SMAOS3) enables the discovery of other SMAs as potential communication partners.

With actnconnect’s Actorsphere ([act]) there exists a first implementation of a
SMAOS.
To address the issue of messaging between Smart Actors (see (SMAOS2)) in re-
gards to transportation layers and formats, we propose the definition of a Smart
Actor Communication Protocol (SMACP). The SMACP could also comprise
possibilities to use blockchain technologies (like Hyperledger Fabric ([Hyp] and
[XWS19] p. 40 f) or dedicated blockchains) for facilitating distributed storage
of messages or even SMA system states.
The discovery of SMAs and/ or SMAOS instances anywhere in the IoA (see
(SMAOS3)) requires a Smart Actor Name System (SMANS). Techniques like
the Satoshi Client Node Discovery ([bit]), the Domain Name System ([Wikb]),
UDDI ([Wikg]) or similar might be used as an inspiration to define such SMANS.
Putting all these definitions together, the components of the IoA will be well-
defined, executable, communicating and the network can be accessed openly
without any discrimination or censorship.

4 Conclusion

The concept of Smart Actors presents a method and implementation of the
central building blocks of a peer-to-peer agile value creation network.
From a methodological point of view the SMAs offer all basic capabilities to
build such a network due to their clear and open communication interfaces
(RBIs). They enable communication between different network nodes regard-
less of their nature. Therefore the Internet of Actors can connect humans,

12

machines and software to facilitate their individual contributions to shared and
individual objectives.
In a technical sense the Smart Actors are not just ”structured” microservices
but represent the base components for a new internet, the IoA. Even the very
foundations of this network, administrative tools, can be described and imple-
mented by SMAs. The IoA is therefore self-sustaining and self-extending.
Individual value contributions27 can be priced and settled by means of the IoA
itself in connection with blockchain-based techniques.
Our further efforts need to go into

(ToDo1) the standardization of IoAN and SMAOS,

(ToDo2) the creation and facilitation of a growing community of (value) contribu-
tors for the IoA,

(ToDo3) the detailing of business models within the IoA and

(ToDo4) the creation of application examples for the building blocks and the value
creation network itself.

The IoA offers a serious economic alternative to the centralized platform
models available today.
The IoA comprises ideal conditions to ”go far beyond just a business model”,
but to build cooperative relationships based on trust to pursue shared interests
([Rif04], p. 192 f).

Acknowledgements

We want to thank Christian Stary, Albert Fleischmann, Felix Gniza, Anton
Friedl, Werner Schmidt, Matthias Lederer and the members of the I2PM com-
munity for the fruitful discussions and their support.

27remember: outputs will be sent in form of messages = communication

13

References

[act] actnconnect. Actorsphere. url: http://actnconnect.de/actorsphere_
en.

[Agh86] Gul A. Agha. Actors: a model of concurrent computation in dis-
tributed systems. MIT Press Cambridge, 1986. isbn: 0-262-01092-5.

[bit] bitcoin.it. Satoshi Client Node Discovery. url: https://en.bitcoin.
it/wiki/Satoshi_Client_Node_Discovery.

[Bör11] Egon Börger. “Approaches to modeling business processes: a critical
analysis of BPMN, workflow patterns and YAWL”. In: Software &
Systems Modeling 11.3 (Sept. 2011), pp. 305–318. doi: 10.1007/
s10270-011-0214-z.

[Bör12] Egon Börger. “A Subject-Oriented Interpreter Model for S-BPM”.
In: Subject-Oriented Business Process Management (2012). Ed. by
Albert Fleischmann et al., pp. 315–363. doi: 10.1007/978-3-642-
32392-8.

[BS03] Egon Börger and Robert Stärk. Abstract State Machines. Springer
Berlin Heidelberg, 2003. doi: 10.1007/978-3-642-18216-7.

[EK18] Matthes Elstermann and Florian Krenn. “The Semantic Exchange
Standard for Subject-Oriented Process Models”. In: Proceedings of
the 10th International Conference on Subject-Oriented Business Pro-
cess Management - S-BPM One ’18. ACM Press, 2018. doi: 10.

1145/3178248.3178257.

[Fle94] Albert Fleischmann. Distributed Systems. Springer Berlin Heidel-
berg, 1994. doi: 10.1007/978-3-642-78612-9.

[Fle+11] Albert Fleischmann et al. Subjektorientiertes Prozessmanagement.
Carl Hanser Verlag GmbH & Co. KG, July 2011. doi: 10.3139/
9783446429697.

[Fle+12] Albert Fleischmann et al. Subject-Oriented Business Process Man-
agement. Springer, 2012. doi: 10.1007/978-3-642-32392-8.

[FL14] Martin Fowler and James Lewis. Microservices - a definition of this
new architectural term. Tech. rep. ThoughtWorks, 2014. url: https:
//www.martinfowler.com/articles/microservices.html.

[Gur95] Yuri Gurevich. “Evolving Algebras 1993: Lipari Guide”. In: Specifi-
cation and Validation Methods (1995). Ed. by Egon Börger, pp. 9–36.
url: https://web.eecs.umich.edu/~gurevich/Opera/103.pdf.

[Hyp] Hyperledger. Hyperledger Fabric. url: https://www.hyperledger.
org/projects/fabric.

[Kol16] Katrin Kolo. “Ode to Choreography”. In: Organizational Aesthetics
5.1 (2016), pp. 37–46. url: https://digitalcommons.wpi.edu/
oa/vol5/iss1/3.

[Mil80] Robin Milner, ed. A Calculus of Communicating Systems. Springer
Berlin Heidelberg, 1980. doi: 10.1007/3-540-10235-3.

[Mil92] Robin Milner. “Functions as processes”. In: Mathematical Struc-
tures in Computer Science 2.02 (June 1992), p. 119. doi: 10.1017/
s0960129500001407.

14

http://actnconnect.de/actorsphere_en
http://actnconnect.de/actorsphere_en
https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery
https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery
https://doi.org/10.1007/s10270-011-0214-z
https://doi.org/10.1007/s10270-011-0214-z
https://doi.org/10.1007/978-3-642-32392-8
https://doi.org/10.1007/978-3-642-32392-8
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1145/3178248.3178257
https://doi.org/10.1145/3178248.3178257
https://doi.org/10.1007/978-3-642-78612-9
https://doi.org/10.3139/9783446429697
https://doi.org/10.3139/9783446429697
https://doi.org/10.1007/978-3-642-32392-8
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://web.eecs.umich.edu/~gurevich/Opera/103.pdf
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://digitalcommons.wpi.edu/oa/vol5/iss1/3
https://digitalcommons.wpi.edu/oa/vol5/iss1/3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1017/s0960129500001407
https://doi.org/10.1017/s0960129500001407

[Nak08] Satoshi Nakamoto. “Bitcoin: A Peer-To-Peer Electronic Cash Sys-
tem”. In: (2008). url: https://bitcoin.org/bitcoin.pdf.

[Rif04] Jeremy Rifkin. The European Dream: How Europe’s Vision of the
Future Is Quietly Eclipsing the American Dream. Jeremy P. Tarcher/
Penguin, 2004.

[Sta17] Christian Stary. “System-of-Systems Design Thinking on Behavior”.
EN. In: Systems 5 (Jan. 2017). doi: 10.3390/systems5010003.

[SF16] Florian Strecker and Albert Fleischmann. “Vorrichtungen, Verfahren
und Computerprogramme zum Erkennen koppelbarer Schnittstellen”.
German. German pat. req. DE 10 2015 107 150 A1. 2016. url:
https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?

docId=DE102015107150A1&page=1&dpi=300&lang=de&full=true.

[Str+16] Florian Strecker et al. “Business-Actors as base components of com-
plex and distributed software applications”. In: S-BPM ’16 Proceed-
ings of the 8th International Conference on Subject-oriented Busi-
ness Process Management. Ed. by Jorge L. Sanz. ACM, 2016. doi:
10.1145/2882879.2882887.

[VB91] J. David Velleman and Michael E. Bratman. “Intention, Plans, and
Practical Reason.” In: The Philosophical Review 100.2 (Apr. 1991),
p. 277. doi: 10.2307/2185304.

[Wika] Wikipedia. Decentralized Application. url: https://en.wikipedia.
org/wiki/Decentralized_application.

[Wikb] Wikipedia. Domain Name System. url: https://en.wikipedia.
org/wiki/Domain_Name_System.

[Wikc] Wikipedia. Law of Demeter. url: https://en.wikipedia.org/
wiki/Law_of_Demeter.

[Wikd] Wikipedia. Smart Contract. url: https://en.wikipedia.org/

wiki/Smart_contract.

[Wike] Wikipedia. Synergy. url: https : / / en . wikipedia . org / wiki /

Synergy.

[Wikf] Wikipedia. Turing Completeness. url: https://en.wikipedia.

org/wiki/Turing_completeness.

[Wikg] Wikipedia. UDDI. url: https://en.wikipedia.org/wiki/Web_
Services_Discovery#Universal_Description_Discovery_and_

Integration.

[Wikh] Wikipedia. User Interface. url: https://en.wikipedia.org/wiki/
User_interface.

[Wiki] Wikipedia. YAGNI. url: https://en.wikipedia.org/wiki/You_
aren%27t_gonna_need_it.

[XWS19] Xiwei Xu, Ingo Weber, and Mark Staples. Architecture for Blockchain
Applications. Springer International Publishing, 2019. doi: 10.1007/
978-3-030-03035-3.

15

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.3390/systems5010003
https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102015107150A1&page=1&dpi=300&lang=de&full=true
https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102015107150A1&page=1&dpi=300&lang=de&full=true
https://doi.org/10.1145/2882879.2882887
https://doi.org/10.2307/2185304
https://en.wikipedia.org/wiki/Decentralized_application
https://en.wikipedia.org/wiki/Decentralized_application
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Synergy
https://en.wikipedia.org/wiki/Synergy
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration
https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration
https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
https://doi.org/10.1007/978-3-030-03035-3
https://doi.org/10.1007/978-3-030-03035-3

Acronyms

ASM Abstract State Machines

BPM Business Process Management

CCS Calculus of Communicating Systems

DApp De-centralized App

DNS Domain Name System

IoA Internet of Actors

IoAN Internet of Actors Notation

IoT Internet of Things

OWL Ontology Web Language

PASS Parallel Activities Specification Scheme

RBA Rule Based Addressing

RBI Role-based Behaviour Interface

SAPP Structured Analysis of Parallel Programs

SMACP Smart Actor Communication Protocol

SMANS Smart Actor Name System

SMAOS Smart Actor Operating System

UDDI Universal Description, Discovery, and Integration

XML eXtensible Markup Language

16

	Introduction
	Smart Actors
	Requirements
	The Foundation of Smart Actors: PASS
	Calculus of Communicating Systems (CCS)
	Parallel Activities Specification Scheme (PASS)

	Independent Releasability of Smart Actors
	Definition of Smart Actors

	A Peer-to-Peer Agile Value Creation Network
	Definition of the Peer-to-Peer Agile Value Creation Network
	Internet of Actors Notation (IoAN)
	Smart Actor Operating System (SMAOS)

	Conclusion
	Acknowledgements
	References
	Acronyms

